Table of Contents
Standard Mathematical Tables and Formulae
(31st edition)
(by Zwillinger)
- Editor-in-Chief
- Associate Editors
- Editorial Advisory Board
- Preface
- Contributors
-
Chapter 1 Analysis
- 1.1 Constants
- 1.1.1 Types of numbers
- 1.1.2 Roman numerals
- 1.1.3 Arrow notation
- 1.1.4 Representation of numbers
- 1.1.5 Binary prefixes
- 1.1.6 Decimal multiples and prefixes
- 1.1.7 Decimal equivalents of common fractions
- 1.1.8 Hexadecimal addition and subtraction table
- 1.1.9 Hexadecimal multiplication table
- 1.1.10 Hexadecimal--decimal fraction conversion table
- 1.2 Special numbers
- 1.2.1 Powers of 2
- 1.2.2 Powers of 16 in decimal scale
- 1.2.3 Powers of 10 in hexadecimal scale
- 1.2.4 Special constants
- 1.2.5 Constants in different bases
- 1.2.6 Factorials
- 1.2.7 Bernoulli polynomials and numbers
- 1.2.8 Euler polynomials and numbers
- 1.2.9 Fibonacci numbers
- 1.2.10 Powers of integers
- 1.2.11 Sums of powers of integers
- 1.2.12 Negative integer powers
- 1.2.13 de-Bruijn sequences
- 1.2.14 Integer sequences
- 1.3 Series and products
- 1.3.1 Definitions
- 1.3.2 General properties
- 1.3.3 Convergence tests
- 1.3.4 Types of series
- 1.3.5 Summation formulae
- 1.3.6 Improving convergence: Shanks transformation
- 1.3.7 Summability methods
- 1.3.8 Operations with power series
- 1.3.9 Miscellaneous sums and series
- 1.3.10 Infinite series
- 1.3.11 Infinite products
- 1.3.12 Infinite products and infinite series
- 1.4 Fourier series
- 1.4.1 Special cases
- 1.4.2 Alternate forms
- 1.4.3 Useful series
- 1.4.4 Expansions of basic periodic functions
- 1.5 Complex analysis
- 1.5.1 Definitions
- 1.5.2 Operations on complex numbers
- 1.5.3 Functions of a complex variable
- 1.5.4 Cauchy--Riemann equations
- 1.5.5 Cauchy integral theorem
- 1.5.6 Cauchy integral formula
- 1.5.7 Taylor series expansions
- 1.5.8 Laurent series expansions
- 1.5.9 Zeros and singularities
- 1.5.10 Residues
- 1.5.11 The argument principle
- 1.5.12 Transformations and mappings
- 1.6 Interval analysis
- 1.6.1 Interval arithmetic rules
- 1.6.2 Interval arithmetic properties
- 1.7 Real analysis
- 1.7.1 Relations
- 1.7.2 Functions (mappings)
- 1.7.3 Sets of real numbers
- 1.7.4 Topological space
- 1.7.5 Metric space
- 1.7.6 Convergence in R with metric |x-y|
- 1.7.7 Continuity in R with metric |x-y|
- 1.7.8 Banach space
- 1.7.9 Hilbert space
- 1.7.10 Asymptotic relationships
- 1.8 Generalized Functions
- 1.8.1 Delta function
- 1.8.2 Other generalized functions
-
Chapter 2 Algebra
- 2.1 Proofs without words
- 2.2 Elementary algebra
- 2.2.1 Basic algebra
- 2.2.2 Progressions
- 2.2.3 DeMoivre's theorem
- 2.2.4 Partial fractions
- 2.3 Polynomials
- 2.3.1 Quadratic polynomials
- 2.3.2 Cubic polynomials
- 2.3.3 Quartic polynomials
- 2.3.4 Quartic curves
- 2.3.5 Quintic polynomials
- 2.3.6 Tschirnhaus' transformation
- 2.3.7 Polynomial norms
- 2.3.8 Cyclotomic polynomials
- 2.3.9 Other polynomial properties
- 2.4 Number theory
- 2.4.1 Divisibility
- 2.4.2 Congruences
- 2.4.3 Chinese remainder theorem
- 2.4.4 Continued fractions
- 2.4.5 Diophantine equations
- 2.4.6 Greatest common divisor
- 2.4.7 Least common multiple
- 2.4.8 Magic squares
- 2.4.9 Mobius function
- 2.4.10 Prime numbers
- 2.4.11 Prime numbers of special forms
- 2.4.12 Prime numbers less than 100,000
- 2.4.13 Factorization table
- 2.4.14 Factorization of 2m-1
- 2.4.15 Euler Totient function
- 2.5 Vector algebra
- 2.5.1 Notation for vectors and scalars
- 2.5.2 Physical vectors
- 2.5.3 Fundamental definitions
- 2.5.4 Laws of vector algebra
- 2.5.5 Vector norms
- 2.5.6 Dot, scalar, or inner product
- 2.5.7 Vector or cross product
- 2.5.8 Scalar and vector triple products
- 2.6 Linear and matrix algebra
- 2.6.1 Definitions
- 2.6.2 Types of matrices
- 2.6.3 Conformability for addition and multiplication
- 2.6.4 Determinants and permanents
- 2.6.5 Matrix norms
- 2.6.6 Singularity, rank, and inverses
- 2.6.7 Systems of linear equations
- 2.6.8 Linear spaces and linear mappings
- 2.6.9 Traces
- 2.6.10 Generalized inverses
- 2.6.11 Eigenstructure
- 2.6.12 Matrix diagonalization
- 2.6.13 Matrix exponentials
- 2.6.14 Quadratic forms
- 2.6.15 Matrix factorizations
- 2.6.16 Theorems
- 2.6.17 The vector operation
- 2.6.18 Kronecker products
- 2.6.19 Kronecker sums
- 2.7 Abstract algebra
- 2.7.1 Definitions
- 2.7.2 Groups
- 2.7.3 Rings
- 2.7.4 Fields
- 2.7.5 Quadratic fields
- 2.7.6 Finite fields
- 2.7.7 Homomorphisms and isomorphisms
- 2.7.8 Matrix classes that are groups
- 2.7.9 Permutation groups
- 2.7.10 Tables
Chapter 3 Discrete Mathematics
- 3.1 Symbolic logic
- 3.1.1 Propositional calculus
- 3.1.2 Tautologies
- 3.1.3 Truth tables as functions
- 3.1.4 Rules of inference
- 3.1.5 Deductions
- 3.1.6 Predicate calculus
- 3.2 Set theory
- 3.2.1 Sets
- 3.2.2 Set operations and relations
- 3.2.3 Connection between sets and probability
- 3.2.4 Venn diagrams
- 3.2.5 Paradoxes and theorems of set theory
- 3.2.6 Inclusion/Exclusion
- 3.2.7 Partially ordered sets
- 3.3 Combinatorics
- 3.3.1 Sample selection
- 3.3.2 Balls into cells
- 3.3.3 Binomial coefficients
- 3.3.4 Multinomial coefficients
- 3.3.5 Arrangements and derangements
- 3.3.6 Partitions
- 3.3.7 Bell numbers
- 3.3.8 Catalan numbers
- 3.3.9 Stirling cycle numbers
- 3.3.10 Stirling subset numbers
- 3.3.11 Tables
- 3.4 Graphs
- 3.4.1 Notation
- 3.4.2 Basic definitions
- 3.4.3 Constructions
- 3.4.4 Fundamental results
- 3.4.5 Tree diagrams
- 3.5 Combinatorial design theory
- 3.5.1 t-Designs
- 3.5.2 Balanced incomplete block designs (BIBDs)
- 3.5.3 Difference sets
- 3.5.4 Finite geometry
- 3.5.5 Steiner triple systems
- 3.5.6 Hadamard matrices
- 3.5.7 Latin squares
- 3.5.8 Room squares
- 3.5.9 Costas arrays
- 3.6 Communication theory
- 3.6.1 Information theory
- 3.6.2 Block coding
- 3.6.3 Source coding for English text
- 3.6.4 Morse code
- 3.6.5 Gray code
- 3.6.6 Finite fields
- 3.6.7 Binary sequences
- 3.7 Difference equations
- 3.7.1 The calculus of finite differences
- 3.7.2 Existence and uniqueness
- 3.7.3 Linear independence: general solution
- 3.7.4 Homogeneous equations with constant coefficients
- 3.7.5 Non-homogeneous equations
- 3.7.6 Generating functions and Z transforms
- 3.7.7 Closed-form solutions for special equations
- 3.8 Discrete Dynamical Systems and Chaos
- 3.8.1 Chaotic one-dimensional maps
- 3.8.2 Logistic map
- 3.8.3 Julia sets and the Mandelbrot set
- 3.9 Game theory
- 3.9.1 Two person non-cooperative matrix games
- 3.9.2 Voting power
- 3.10 Operations research
- 3.10.1 Linear programming
- 3.10.2 Duality and complementary slackness
- 3.10.3 Linear integer programming
- 3.10.4 Branch and bound
- 3.10.5 Network flow methods
- 3.10.6 Assignment problem
- 3.10.7 Dynamic programming
- 3.10.8 Shortest path problem
- 3.10.9 Heuristic search techniques
Chapter 4 Geometry
- 4.1 Coordinate systems in the plane
- 4.1.1 Convention
- 4.1.2 Substitutions and transformations
- 4.1.3 Cartesian coordinates in the plane
- 4.1.4 Polar coordinates in the plane
- 4.1.5 Homogeneous coordinates in the plane
- 4.1.6 Oblique coordinates in the plane
- 4.2 Plane symmetries or isometries
- 4.2.1 Formulae for symmetries: Cartesian coordinates
- 4.2.2 Formulae for symmetries: homogeneous coordinates
- 4.2.3 Formulae for symmetries: polar coordinates
- 4.2.4 Crystallographic groups
- 4.2.5 Classifying the crystallographic groups
- 4.3 Other transformations of the plane
- 4.3.1 Similarities
- 4.3.2 Affine transformations
- 4.3.3 Projective transformations
- 4.4 Lines
- 4.4.1 Lines with prescribed properties
- 4.4.2 Distances
- 4.4.3 Angles
- 4.4.4 Concurrence and collinearity
- 4.5 Polygons
- 4.5.1 Triangles
- 4.5.2 Quadrilaterals
- 4.5.3 Regular polygons
- 4.6 Conics
- 4.6.1 Alternative characterization
- 4.6.2 The general quadratic equation
- 4.6.3 Additional properties of ellipses
- 4.6.4 Additional properties of hyperbolas
- 4.6.5 Additional properties of parabolas
- 4.6.6 Circles
- 4.7 Special plane curves
- 4.7.1 Algebraic curves
- 4.7.2 Roulettes (spirograph curves)
- 4.7.3 Curves in polar coordinates
- 4.7.4 Spirals
- 4.7.5 The Peano curve and fractal curves
- 4.7.6 Fractal objects
- 4.7.7 Classical constructions
- 4.8 Coordinate systems in space
- 4.8.1 Cartesian coordinates in space
- 4.8.2 Cylindrical coordinates in space
- 4.8.3 Spherical coordinates in space
- 4.8.4 Relations between Cartesian, cylindrical, and spherical coordinates
- 4.8.5 Homogeneous coordinates in space
- 4.9 Space symmetries or isometries
- 4.9.1 Formulae for symmetries: Cartesian coordinates
- 4.9.2 Formulae for symmetries: homogeneous coordinates
- 4.10 Other transformations of space
- 4.10.1 Similarities
- 4.10.2 Affine transformations
- 4.10.3 Projective transformations
- 4.11 Direction Angles and Direction Cosines
- 4.12 Planes
- 4.12.1 Planes with prescribed properties
- 4.12.2 Concurrence and coplanarity
- 4.13 Lines in space
- 4.13.1 Distances
- 4.13.2 Angles
- 4.13.3 Concurrence, coplanarity, parallelism
- 4.14 Polyhedra
- 4.14.1 Convex regular polyhedra
- 4.14.2 Polyhedra nets
- 4.15 Cylinders
- 4.16 Cones
- 4.17 Surfaces of revolution: the torus
- 4.18 Quadrics
- 4.19 Spherical geometry & trigonometry
- 4.19.1 Right spherical triangles
- 4.19.2 Oblique spherical triangles
- 4.20 Differential geometry
- 4.20.1 Curves
- 4.20.2 Surfaces
- 4.21 Angle conversion
- 4.22 Knots up to eight crossings
Chapter 5 Continuous Mathematics
- 5.1 Differential calculus
- 5.1.1 Limits
- 5.1.2 Derivatives
- 5.1.3 Derivatives of common functions
- 5.1.4 Derivative formulae
- 5.1.5 Derivative theorems
- 5.1.6 The two-dimensional chain rule
- 5.1.7 l'Hospital's rule
- 5.1.8 Maxima and minima of functions
- 5.1.9 Vector calculus
- 5.1.10 Matrix and vector derivatives
- 5.2 Differential forms
- 5.2.1 Products of 1-forms
- 5.2.2 Differential 2-forms
- 5.2.3 The 2-forms in Rn
- 5.2.4 Higher dimensional forms
- 5.2.5 The exterior derivative
- 5.2.6 Properties of the exterior derivative
- 5.3 Integration
- 5.3.1 Definitions
- 5.3.2 Properties of integrals
- 5.3.3 Methods of evaluating integrals
- 5.3.4 Types of integrals
- 5.3.5 Integral inequalities
- 5.3.6 Convergence tests
- 5.3.7 Variational principles
- 5.3.8 Continuity of integral anti-derivatives
- 5.3.9 Asymptotic integral evaluation
- 5.3.10 Special functions defined by integrals
- 5.3.11 Applications of integration
- 5.3.12 Moments of inertia for various bodies
- 5.3.13 Tables of integrals
- 5.4 Table of Indefinite Integrals
- 5.4.1 Elementary forms
- 5.4.2 Forms containing a+bx
- 5.4.3 Forms containing c2 +- x2 and x2-c2
- 5.4.4 Forms containing a+bx and c+dx
- 5.4.5 Forms containing a+bxn
- 5.4.6 Forms containing c3 +- x3
- 5.4.7 Forms containing c4 +- x4
- 5.4.8 Forms containing a+b x+c x2
- 5.4.9 Forms containing SQRT(a+b x
- 5.4.10 Forms containing SQRT(a+b x) and SQRT(c+d x)
- 5.4.11 Forms containing SQRT(x2 +- a2)
- 5.4.12 Forms containing SQRT(a2-x2)
- 5.4.13 Forms containing SQRT(a+bx+cx2)
- 5.4.14 Forms containing SQRT(2ax-x2)
- 5.4.15 Miscellaneous algebraic forms
- 5.4.16 Forms involving trigonometric functions
- 5.4.17 Forms involving inverse trigonometric functions
- 5.4.18 Logarithmic forms
- 5.4.19 Exponential forms
- 5.4.20 Hyperbolic forms
- 5.4.21 Bessel functions
- 5.5 Table of definite integrals
- 5.5.1 Table of semi-integrals
- 5.6 Ordinary differential equations
- 5.6.1 Linear differential equations
- 5.6.2 Solution techniques
- 5.6.3 Integrating factors
- 5.6.4 Variation of parameters
- 5.6.5 Green's functions
- 5.6.6 Table of Green's functions
- 5.6.7 Transform techniques
- 5.6.8 Named ordinary differential equations
- 5.6.9 Liapunov's direct method
- 5.6.10 Lie groups
- 5.6.11 Stochastic differential equations
- 5.6.12 Types of critical points
- 5.7 Partial differential equations
- 5.7.1 Classifications of PDEs
- 5.7.2 Named partial differential equations
- 5.7.3 Transforming partial differential equations
- 5.7.4 Well-posedness of PDEs
- 5.7.5 Green's functions
- 5.7.6 Quasi-linear equations
- 5.7.7 Separation of variables
- 5.7.8 Solutions of Laplace's equation
- 5.7.9 Solutions to the wave equation
- 5.7.10 Particular solutions to some PDEs
- 5.8 Eigenvalues
- 5.9 Integral equations
- 5.9.1 Definitions
- 5.9.2 Connection to differential equations
- 5.9.3 Fredholm alternative
- 5.9.4 Special equations with solutions
- 5.10 Tensor analysis
- 5.10.1 Definitions
- 5.10.2 Algebraic tensor operations
- 5.10.3 Differentiation of tensors
- 5.10.4 Metric tensor
- 5.10.5 Results
- 5.10.6 Examples of tensors
- 5.11 Orthogonal coordinate systems
- 5.11.1 Table of orthogonal coordinate systems
- 5.12 Control theory
Chapter 6 Special Functions
- 6.1 Trigonometric or circular functions
- 6.1.1 Definition of angles
- 6.1.2 Characterization of angles
- 6.1.3 Circular functions
- 6.1.4 Circular functions of special angles
- 6.1.5 Evaluating sines and cosines at multiples of pi
- 6.1.6 Symmetry and periodicity relationships
- 6.1.7 Functions in terms of angles in the first quadrant
- 6.1.8 One circular function in terms of another
- 6.1.9 Circular functions in terms of exponentials
- 6.1.10 Fundamental identities
- 6.1.11 Angle sum and difference relationships
- 6.1.12 Double angle formulae
- 6.1.13 Multiple angle formulae
- 6.1.14 Half angle formulae
- 6.1.15 Powers of circular functions
- 6.1.16 Products of sine and cosine
- 6.1.17 Sums of circular functions
- 6.2 Circular functions and planar triangles
- 6.2.1 Right triangles
- 6.2.2 General plane triangles
- 6.2.3 Half angle formulae
- 6.2.4 Solution of triangles
- 6.2.5 Tables of trigonometric functions
- 6.3 Inverse circular functions
- 6.3.1 Definition in terms of an integral
- 6.3.2 Principal values of the inverse circular functions
- 6.3.3 Fundamental identities
- 6.3.4 Functions of negative arguments
- 6.3.5 Relationship to inverse hyperbolic functions
- 6.3.6 Sum and difference of two inverse trigonometric functions
- 6.4 Ceiling and floor functions
- 6.5 Exponential function
- 6.5.1 Exponentiation
- 6.5.2 Definition of ez
- 6.5.3 Derivative and integral of ex
- 6.6 Logarithmic functions
- 6.6.1 Definition of the natural logarithm
- 6.6.2 Logarithm of special values
- 6.6.3 Relating the logarithm to the exponential
- 6.6.4 Identities
- 6.6.5 Series expansions for the natural logarithm
- 6.6.6 Derivative and integration formulae
- 6.7 Hyperbolic functions
- 6.7.1 Definitions of the hyperbolic functions
- 6.7.2 Range of values
- 6.7.3 Hyperbolic functions in terms of one another
- 6.7.4 Relations among hyperbolic functions
- 6.7.5 Relationship to circular functions
- 6.7.6 Series expansions
- 6.7.7 Symmetry relationships
- 6.7.8 Sum and difference formulae
- 6.7.9 Multiple argument relations
- 6.7.10 Sums of functions
- 6.7.11 Products of functions
- 6.7.12 Half--argument formulae
- 6.7.13 Differentiation formulae
- 6.8 Inverse hyperbolic functions
- 6.8.1 Range of values
- 6.8.2 Relationships among inverse hyperbolic functions
- 6.8.3 Relationships with logarithmic functions
- 6.8.4 Relationships with circular functions
- 6.8.5 Sum and difference of functions
- 6.9 Gudermannian Function
- 6.9.1 Fundamental identities
- 6.9.2 Derivatives of Gudermannian
- 6.9.3 Relationship to hyperbolic and circular functions
- 6.9.4 Numerical values of hyperbolic functions
- 6.10 Orthogonal polynomials
- 6.10.1 Hermite polynomials
- 6.10.2 Jacobi polynomials
- 6.10.3 Laguerre polynomials
- 6.10.4 Generalized Laguerre polynomials
- 6.10.5 Legendre polynomials
- 6.10.6 Chebyshev polynomials, first kind
- 6.10.7 Chebyshev polynomials, second kind
- 6.10.8 Tables of orthogonal polynomials
- 6.10.9 Zernike polynomials
- 6.10.10 Spherical harmonics
- 6.11 Gamma function
- 6.11.1 Recursion formula
- 6.11.2 Gamma function of special values
- 6.11.3 Properties
- 6.11.4 Asymptotic expansion
- 6.11.5 Logarithmic derivative of the gamma function
- 6.11.6 Numerical values
- 6.12 Beta function
- 6.12.1 Numerical values of the beta function
- 6.13 Error functions
- 6.13.1 Properties
- 6.13.2 Error function of special values
- 6.13.3 Expansions
- 6.13.4 Special cases
- 6.14 Fresnel integrals
- 6.14.1 Properties
- 6.14.2 Asymptotic expansion
- 6.14.3 Numerical values of error functions and Fresnel integrals
- 6.15 Sine, cosine, and exponential integrals
- 6.15.1 Sine and cosine integrals
- 6.15.2 Exponential integrals
- 6.15.3 Logarithmic integral
- 6.15.4 Numerical values
- 6.16 Polylogarithms
- 6.16.1 Polylogarithms of special values
- 6.16.2 Polylogarithms properties
- 6.17 Hypergeometric functions
- 6.17.1 Special cases
- 6.17.2 Properties
- 6.17.3 Recursion formulae
- 6.18 Legendre functions
- 6.18.1 Differential equation: Legendre function
- 6.18.2 Definition
- 6.18.3 Singular points
- 6.18.4 Relationships
- 6.18.5 Recursion relationships
- 6.18.6 Integrals
- 6.18.7 Polynomial case
- 6.18.8 Differential equation: associated Legendre function
- 6.18.9 Relationships between the associated and ordinary Legendre functions
- 6.18.10 Orthogonality relationship
- 6.18.11 Recursion relationships
- 6.19 Bessel functions
- 6.19.1 Differential equation
- 6.19.2 Singular points
- 6.19.3 Relationships
- 6.19.4 Series expansions
- 6.19.5 Recurrence relationships
- 6.19.6 Behavior as z->0
- 6.19.7 Integrals
- 6.19.8 Fourier expansion
- 6.19.9 Auxiliary functions
- 6.19.10 Inverse relationships
- 6.19.11 Asymptotic expansions
- 6.19.12 Zeros of Bessel functions
- 6.19.13 Half order Bessel functions
- 6.19.14 Modified Bessel functions
- 6.19.15 Airy functions
- 6.19.16 Numerical values for the Bessel functions
- 6.20 Elliptic integrals
- 6.20.1 Definitions
- 6.20.2 Properties
- 6.20.3 Numerical values of the elliptic integrals
- 6.21 Jacobian elliptic functions
- 6.21.1 Properties
- 6.21.2 Derivatives and integrals
- 6.21.3 Series expansions
- 6.22 Clebsch--Gordan coefficients
- 6.23 Integral transforms: Preliminaries
- 6.24 Fourier integral transform
- 6.24.1 Existence
- 6.24.2 Properties
- 6.24.3 Inversion formula
- 6.24.4 Poisson summation formula
- 6.24.5 Shannon's sampling theorem
- 6.24.6 Uncertainty principle
- 6.24.7 Fourier sine and cosine transforms
- 6.25 Discrete Fourier transform (DFT)
- 6.26 Fast Fourier transform (FFT)
- 6.27 Multidimensional Fourier transforms
- 6.28 Laplace transform
- 6.28.1 Existence and domain of convergence
- 6.28.2 Properties
- 6.28.3 Inversion formulae
- 6.28.4 Convolution
- 6.29 Hankel transform
- 6.30 Hartley transform
- 6.31 Hilbert transform
- 6.31.1 Existence
- 6.31.2 Properties
- 6.31.3 Relationship with the Fourier transform
- 6.32 Z-Transform
- 6.32.1 Examples
- 6.32.2 Properties
- 6.32.3 Inversion formula
- 6.32.4 Convolution and product
- 6.33 Tables of transforms
Chapter 7 Probability and Statistics
- 7.1 Probability theory
- 7.1.1 Introduction
- 7.1.2 Multivariate distributions
- 7.1.3 Random sums of random variables
- 7.1.4 Transforming variables
- 7.1.5 Central limit theorem
- 7.1.6 Inequalities
- 7.1.7 Averages over vectors
- 7.1.8 Geometric probability
- 7.2 Classical probability problems
- 7.2.1 Raisin cookie problem
- 7.2.2 Gambler's ruin problem
- 7.2.3 Card games
- 7.2.4 Distribution of dice sums
- 7.2.5 Birthday problem
- 7.3 Probability distributions
- 7.3.1 Discrete distributions
- 7.3.2 Continuous distributions
- 7.4 Queuing theory
- 7.4.1 Variables
- 7.4.2 Theorems
- 7.5 Markov chains
- 7.5.1 Transition function and matrix
- 7.5.2 Recurrence
- 7.5.3 Stationary distributions
- 7.5.4 Random walks
- 7.5.5 Ehrenfest chain
- 7.6 Random number generation
- 7.6.1 Methods of pseudorandom number generation
- 7.6.2 Generating non-uniform random variables
- 7.7 Control charts and reliability
- 7.7.1 Control charts
- 7.7.2 Acceptance sampling
- 7.7.3 Reliability
- 7.7.4 Failure time distributions
- 7.8 Risk analysis and decision rules
- 7.9 Statistics
- 7.9.1 Descriptive statistics
- 7.9.2 Statistical estimators
- 7.9.3 Cramer--Rao bound
- 7.9.4 Order statistics
- 7.9.5 Classic statistics problems
- 7.10 Confidence intervals
- 7.10.1 Confidence interval: sample from one population
- 7.10.2 Confidence interval: samples from two populations
- 7.11 Tests of hypotheses
- 7.11.1 Hypothesis tests: parameter from one population
- 7.11.2 Hypothesis tests: parameters from two populations
- 7.11.3 Hypothesis tests: distribution of a population
- 7.11.4 Hypothesis tests: distributions of two populations
- 7.11.5 Sequential probability ratio tests
- 7.12 Linear regression
- 7.12.1 Linear model yi=b0+b1xi+e
- 7.12.2 General model y=b0+b1x1+b2x2+...+bnxn+e
- 7.13 Analysis of variance (ANOVA)
- 7.13.1 One-factor ANOVA
- 7.13.2 Unreplicated two-factor ANOVA
- 7.13.3 Replicated two-factor ANOVA
- 7.14 Probability tables
- 7.14.1 Critical values
- 7.14.2 Table of the normal distribution
- 7.14.3 Percentage points, Student's t-distribution
- 7.14.4 Percentage points, chi-square distribution
- 7.14.5 Percentage points, F-distribution
- 7.14.6 Cumulative terms, binomial distribution
- 7.14.7 Cumulative terms, Poisson distribution
- 7.14.8 Critical values, Kolmogorov--Smirnov test
- 7.14.9 Critical values, two sample Kolmogorov--Smirnov test
- 7.14.10 Critical values, Spearman's rank correlation
- 7.15 Signal processing
- 7.15.1 Estimation
- 7.15.2 Kalman filters
- 7.15.3 Matched filtering (Wiener filter)
- 7.15.4 Walsh functions
- 7.15.5 Wavelets
Chapter 8 Scientific Computing
- 8.1 Basic numerical analysis
- 8.1.1 Approximations and errors
- 8.1.2 Solution to algebraic equations
- 8.1.3 Interpolation
- 8.1.4 Fitting equations to data
- 8.2 Numerical linear algebra
- 8.2.1 Solving linear systems
- 8.2.2 Gaussian elimination
- 8.2.3 Gaussian elimination algorithm
- 8.2.4 Pivoting
- 8.2.5 Eigenvalue computation
- 8.2.6 Householder's method
- 8.2.7 QR algorithm
- 8.2.8 Non-linear systems and numerical optimization
- 8.3 Numerical integration and differentiation
- 8.3.1 Numerical integration
- 8.3.2 Numerical differentiation
- 8.3.3 Numerical summation
- 8.4 Programming techniques
Chapter 9 Financial Analysis
- 9.1 Financial formulae
- 9.1.1 Definition of financial terms
- 9.1.2 Formulae connecting financial terms
- 9.1.3 Examples
- 9.2 Financial tables
- 9.2.1 Compound interest: find final value
- 9.2.2 Compound interest: find interest rate
- 9.2.3 Compound interest: find annuity
Chapter 10 Miscellaneous
- 10.1 Units
- 10.1.1 SI system of measurement
- 10.1.2 United States customary system of weights and measures
- 10.1.3 Physical constants
- 10.1.4 Dimensional analysis/Buckingham pi
- 10.1.5 Units of physical quantities
- 10.1.6 Conversion: metric to English
- 10.1.7 Conversion: English to metric
- 10.1.8 Miscellaneous conversions
- 10.1.9 Temperature conversion
- 10.2 Interpretations of powers of 10
- 10.3 Calendar computations
- 10.3.1 Leap years
- 10.3.2 Day of week for any given day
- 10.3.3 Number of each day of the year
- 10.4 AMS classification scheme
- 10.5 Fields medals
- 10.6 Greek alphabet
- 10.7 Computer languages
- 10.7.1 Software contact information
- 10.8 Professional Mathematical Organizations
- 10.9 Electronic mathematical resources
- 10.10 Biographies of mathematicians